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A :net 10d of s olving rr.in!mal cost network flow problems ts 

dc3cr1bcd. TI1is method b~gins wit~ any circulation, feasible 

or not, and ~n arbitra ry pricing vector. A labelin~ procedure 

1~ then used to adju s t •out-of-l,1lter6 arcs, tba t is, arcs 

t hat f ail to s atisf:v the optimality properties. It is shown 

t na t t ' e :net; 1-Ja termina tes in a flni te nu:nber of s tep~, and 

t h..J.t 1n uo doir:g, t h e '" i.:;.l.tu:3 or no arc nr the networl. (au 

::;easure d b y certa in t!,.1lter numbers•) 13 worsened at any 3+-~p. ( ) 
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AM OUT-OP-KILTER METrlOD FOR MINIMAL 

COST  FLO,.'   PROBLEMS1 

D.   P..   FulkerMon 

1.  Introduction  In thlr. paper a method of -iolvlng 

minimal coat networ1-: flow problems 1& deocrlbed and i'hovm to 

have a certain desirable monotone behav'or. The  method begins 

with an arbitrary flow, feasible or not, together with an 

arbitrary pricing vector, and then uses a labeling procedure 

to adjust an arc of the network that falls to satisfy the 

appropriate optlmallt:/ properties. 

To oresent the basic notions underlying the method, lee 

ur consider, for a moment, a general linear program of the 

form 

n 
(1.1)       aHxJ  bl (1 = 1,..., ra) 

(1.2)    / < x. < u^ (J - 1, ..., n) 

n 
(1.3-)    minimize  S c.x.. 

J=l 3  J 

►(ere the a.., b,, &,,  u., c, are givea.  Now suppose that 
ij  i  j   J  ,i 

x = (x-,, ..., ■; ) iv  a vector satisfying (l.l) and (1.2), 

that is, x Is feasible, and that there is a dual (or pricing) 

This research was supported in part by the Pacific Lighting 
Sys tern. 
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vector TT =  (TT, ,   ...,  ir )  ^uo^.  that the Imolications 1 m 

in 
(1.^) Cj  +    T. TTiii. > 0  > Xj = £1 

(1.5) c,  +     T, TT a       < 0 ^.• X =  u 
o l-l1- ^ ^ 

hold for all j. Then It follows that x Is a minimizing üolution, 

and thut (1.4), (1.5) might be termed optlmallty oroperties. 

For a given x satisfying (l.l) and for any TT, the following 

case clasrilflcatlon for the J—th component of the program is 

exclusive and exhaustive: 

* 

(a)    cj + I Vij > 0'        xj    £j 

(3)      c.  + T. v^ij  = 0. &<  \ Xj ^ u^ 
1 

X ,  = u (Y) CJ + S r^j < 0, „j - -. 

(a,) o,   •  r vxH} > 0. Xj < ij 

(3,) o     • 0. *..  < Ü, 

{7x) c,  > S Vl. < 0. Xj  < u, 

(a2) Cj  + S VlJ > 0, Xj  > t} 

(92) 0,   :- S ^ajj - 0, Xj > u. 

(r2)   oj . s VlJ < o. xj > u. 
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If all components are In one of the atates a, ß, Y, then x IG 

feasible and optimal,  ./e call these the "In—kilter" states, the 

others "out—of-!•liter" states. The algorlthi:» to be presented for 

network flow problems concentrates on a particular out-of—kilter 

comoonent, ana gradually puts It in kilter.  It does this In such 

a way that all in—filter components stay In filter, whereas any 

oti^er out-of-kilter component either improves or stays the 

same, in a sense made precise in section 2, 

Section 2 provides a description of the special class of 

linear programs to which the method applies, together with some 

preliminary discussion,  «e assume that the given data for the 

program are integers (or, equivalently, ratlonals). Then the 

algorithm, presented in section 3, works with integers throughout. 

A proof that the algorithm terminates in a finite number of steps, 

and that in so doing it possesses the monotone property roughly 

described above, is sketched in section k.    Some comparisons 

with other methods for solving minimal cost flow nroblems are 

made in section 3. 

For the particular class o^ programs being considered, the 

asaumption that the initial x satisfies (i.l) is unimportant, 

since such an x is Immediately available, e.g., y - 0,    3ut 

starting with a good guess for x and r  will decrease comoutatlon 

time.  One situation for which the nresent algorithm is par- 

ticularly appropriate would be in solving a sequence of flow 

problems, where each problem of the sequence differs only 

slightly from its predecessor. Then the old optimal x and 7r 

could be used to initiate the comoutatlon for tne new oroblem. 

.. 
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.e should llV.e  to express our appreciation to 3. B, 

Dantzlg, whose criticism of an earlier version of thlc paper In 

which the intltlal x was assumed feasible, led us to reconsider 

the problem from the standpoint of Infeaslble x. 

2. Notation, definitions, and problem description, 

.v'e suppose given a network consisting of nodes 1, 2,   ..,, n 

together with directed area 1J (from node 1 to node j). Each 

arc 1J has associated with It three Integers: i. . (the arc 

lower bound), u.. (the arc upper bound or capacity), and 

c1 4 (the arc cost), with 0 < i.. ^ u. .. 

It Is convenient to describe the problem In terms of clr*- 

culatlonr fl?], rather than flows from sources to sinks 

!j» 8» 3* By ^ circulation we shall mean a nonnegative 

Integral vector x = (x.,), one component for each arc 1J, that 

satisfies the conservation equations 

(2.1)    ?:(x1J - x^) =0 (1-1, .-, n). 

If the  circulation x also satisfies 

(2.2) i1J <; x^ < u1J (all arcs Ij), 

we call x a feasible circulation. Ma shall refer to a part^ 

cular component x.. of a  circulation as the arc flow x. . or 

the flow In arc IJ. 

A feasible circulation x that minimizes the cost form 

over all feasible circulations la optimal. The problem we 
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are conolderlng 1L that of constructing an optimal circulation. 

Of course feasible circulations may not exist, in which case 

we .-.'ant to discover this fact. It is known [12] that a neces- 

sary and cufriclent concltlon for the existence of a feasible 

circulation is that the inequalities 

(2.4) I  u.. 2 1       'u 
1 in L 1J  1 In L J1 

J in I     j in L 

};old for all su^:-.ets L of nodes. :iere T,  denotes the complement 

of L. The conditions (2,4) are easily shown to be necessary; 

their sufficiency can be proved in various ways, for example, 

using the max flow min cut theorem [j, 8] or the supply— 
■ 

jemand  theorem  [ill. 

Let TT -  (TT. )  be a vector of Integers,  one component for 

each node  1.     ,<'e  call TT a pricing vector,  and refer to Its 

components as node prices.    Optlmillty properties for the 

problem are that the  implications 

(2.5) C. ^    +   TT.    -   TT.    >   0    » X. .    «   i, , 

;      (2.6) c^ . ^ -^ < 0  ^x^  = u^ 

hold for all arcs  ij.     That  Is,  if x*is  a  feasible circulation, 

and  If  there is a pricing vector TT such  that  (2.3),   (2.6) 

hold,   then x 1:   optimal.     We shall  shorten the notation by 

setting 
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F· r a given clrcu1at 1o x and p,. ic in ?' -e e tc r v, a n a t•c 

1 ,~ 1s in .~ u ~t one o f t t, p ro ll owln e; sta .e ... : 

(a) - 0 , 't ,; e 1 .~ 
,. 

xi . "'· 

(f)) 0, ' ~ ; 

,/ 

\ c1 f .: ~ x, ! u 1.! ._ -~ .. 
(y) c 1 1 

( 0, :• i . " ' 
, 

< 

(al) o. ' , 1 1 e1J , X l • ,J .,; 

( ~1 ) c j, • << 0 . / '1 ' .. ' ' .. 1 . / ... 

(yl ) < 0 , 
, 

c~ . ... 
' 

(' . l 1 .1 
- .l 

( Q , ) 
-

(' '1 ' 
~ 

/ 
~- 1.: ' ' 1 l 

< 

{ e,., ) c 1.: -· 0 , Ai . '1 1 .; ( ... 

(y') ) / 0 , ' ' 1j y i "' ,. u i ' . 
(.. .... .. 

.... r··~ 1 l j ,, 1"' l r 1 1 "-· Y> ~ · ' 
( ./.,_ ...... - . ...... - ! J. . . "" ~ .. - - .1 : t1 o e f t~ e 

T!"·us to 

:.3.) 1 E: t lH. pr e l em , we 1C: ·-· d .., get al l 'H' c~.> i n '· ilter . 

:v i ·:~. :-o. ch ::ota te r: a.t a n ar c 1 ,~ c · n ~ i :-1 , ·,-~ e ·: 11 ~ 1 1 asso c ia t e 

l no;.n~ e:o.tl ve .tnteger , cal e d ~ · .· 1l t er number or the arc in 

arc :Z iltcr mnber s co r r es pondi ng t o ou t-<>f'-! :1lt:e r sta t es a r·e 

li e te 1 lo w: 

.., 
J .. ~ .: ... 



( ( ' ·' ) 

( 'Y . ) 
.!. 

(a J 
c 

( ~ ) ' , I 

(-y? ) 

_o _ t:r.e :-:. r"" fl 

'Y ., , a., 

.i1 .' - xl. .l 
-

1 .' C< i : ' ) u~ 
~ . 

~i.(x ~ . 
. I .J..' 

l ~: > 

' ' ' '1 I ~ ' j ~ 

Y.-1 I 
1 _! • ' 

, . .... _. t , . ,.. A Q. \.. ""'" •..; . ... - , ....,1 1 • ...~ 2' 
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lnfe us1b111 :' 

. , W:. 1 ] e ti •P. r !l te r n l' b . !'3 f o p Sv.'ltes .... 
l' ,..., :":· l ' • 1 :. to ,/:1 1c' ":on E opt i ma lity 

, ,, . J. .,.crj .. ,!: . ~ ,-:..l. t ~-. 1, t .:e fo ll 0win~ .j e ction i a s the 

:) ~"r ·· ~ r J : ·.1 t ..... J l :...t r c .·1 t.er ~ .'. :'1 b r :.5 ., v- _ ,"',o n t >ne no ~1ncreas1ng 

n 1r. 1 ~ ,.. . 

·.:e need a fe., other notions betore stating the algorithm, 

the ma.1n one being t ':H! t of a path rram some norte to another ln 

d networ ~:. Let 11, 12, •••• 1 t ·e a sequence or distinct 
m 

node s of a net·.~or: ~uch that either 1 k 1~ _ ... l or 1k+l 1k 

i s an arc, ;r ·- 1, ... , m - 1. Picking out, for each k , one ct 

the e two !)Oss1'b111t1es, we call the resulting sequence or 

no e s a nd arc ~ a o~th from i 1 ~ 1m. Arc ~ 1k i~+l that belons 

to th e pa th a~e forward ares of the path; arcs ik+lik that 

belong to the path are reverse arc ~ of the path. Ir we alter 
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t ! e de finiti o n 0f a ~ a t ~ 1 o:: .:>t1nuJ.J.t1I"'E~ tna ': L
1 

'-= 1 , we 
m 

call ~ ~ ~ re :-- u 1 tl ~ ::; equ;: nc of node, an a r- c .' cvcle. 

3. An out-ot-k1lter algorithm. The algorithm ot this 

section uees a modified labeling procedure @, ~ as 1 ts 

basic rout!ne. In general, the labeling procedure 1a a 

scar~·, r r ..... ;.at!1 ( having ::ertain desired properties) fror. 

o~e node t~ ano t~er . ~e 3t a r t lnb~1 ! . -f r-o~ a ~1v~ n node, 

al . o the o r- lg1n, c ~ t · . 1) t i .g t .:) r·-acr. :.oine o th -:.· r g j ·;en :~o de , 

C3.lle d the t ·~rm!nal. T- 1!-,:t t1a t~ t :-.e : ·~ ified procedure, we 

&. :3 s 1 g:n t ne la ne 1 G , r:e followin . label1n~ 

ru le::J .:t r e t.1en applied : 

( "; . 1) 

L Y} r:.. .... ~ 1 t::ri , <lnd i f 1.' 1 !.i .r: ., r ~~ , 

• 
(- ) ci - < .t i - ~ , ' 

.J , 
l .j 

( l, ) - / ... 
~ ) ·' v 

i...: i ~ i . '' 1.' . , 

.· r -::: c ~. i \ e S t l C: c8 1' e a I , ~- ,J' 'H.: .re 

{..!. ) , _ , r:1 1 r. ( E 1 1 u l ,1 - X 1 J ) · d I - .ti - xi. ;) 1 . : :. ·'"' - c •\ ":. ! J 

" 
l ! c ·· ~' e c~· ) . 

: 7 ' ) 
--' • < l 2 ~.u d \.. ' 1 · un labeled, 

( :.;,. ) - . 
~ ~ i l- l l i' 



( b ) ( o. ' c ._1 X 1 / uji 

• 
then node J re~e1ve s the label o.·-, 

E ~' where 

E 
j 

::.... --a i n ( E
1

, x j 1 - 'j1) tn case ( li .. ) , 

E: 
1 ·- :r: in(c

1
, x ,l 1 - ujt) 1n case (b). 

He r e ·.: 1 s a c1 •.u1:. t lon ar ·1 ,. a pr· 1c1ng vector. 

T -e :'..<:.bel ng 9r oc e=: :iure ":.e-rrn1natcs in one ot two wa:v·s, 

cal le· · brea::tllr ol.q:t and non breakthrough, res!)ee t1 vely: el th~tr 

the t ~ rm1na1 re ceives a l a bel, or no rr.ore labels c~n be 

aselg. e d and the tenn1nal has not been labeled. 

I f ~ea: t hrough occur~, ~ path rrom or1g1n to terminal 

can ~e loc a ~d b:t ~ac l trac :.d n ·:r fror;· t 'l e te-..nl1n&l, using t he 

f1I"' t . 1embe~~ or tr.e l a e l pairs. It, 1n this ~lacktraeklna. 

D noc1e 1 rea che th C! t carries the labe 1 [1 ~ , c jJ • then 1J 

1S a f" !'Ward arc Of the path from origin to ternlnal; if j io 

labe le d [1-, E J , then J i 13 a re verse arc or the path. Thua 
.J 

forward arce or the pa.ttt f;at13ty e!ther {3.1a) or (3.lb), 

whereas re v•?rse arc"' of t h.e path sa tl3ty (:;. 2a) 01• ( 3. 2b). 

If nonbreakt h :--ougJl r e sultJ, ·.-.e l et L and t cJenote the 
I 

s e ts c f' la ' el~d and unlabeled node s re spectively, ancl detlne 

t wo s ubsets of arc~: 

( 3 . 3 ) 

( 3 .4) 

Q. 1 - fJ 11 tn L, ' in t, "t.l / 0, "tJ ~ u1 .1} 

G( 2 ~ {Jtl1 ln L, J 1n r;, OJl ( 0, "Jt l 'Jt}· 
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~~e then define 

(3-5) 61 = Min (ciJ> 
1J in a1 

5-., = min (- cJ1) ... 
Ji 1n ~ 

(3.6) 

(}.7) 6 := m1n(51 , r \ 
u2 J• 

Here r; 1 (i = l, 2) i => a positive integer or oo accordin8 ao 

(Ji 1s nonempt. r or emp -..y . 

The complete algor1 thr.t nO\'i runs a :::. follown. Start the 

couputat1on with any circulation x and any pricing vector ,.. 

Next locato an out-of-1:1lt er nrc s t and go on to the appro-

priate ca 3e be l ow: 

J
3
t• T t1e or1g1n for labe l ing 

i:J t, the termina l s . If brea:cthrougl re­

sults, add € ~ mi n {EF ' J 3 t - As t) to the 

flow 1n all forward arcs or the path from 

t to s, subtract f trom the tlow in ~ll 

re \rerae arcs, and add € to x
6
t. It non­

break til rough resulta, add 5 der1ned ln (3.7) 

to all ,.1 tor 1 in t. 

(~1) or (~1) est = o, xst < Jst' or est < o, 
x

5
t < u

8
t• Same as (o1), except 



1        \ r '^T' 
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u - mln(esJ uat -x8t). 

(a2) :.r (ß^) "^ > 0,  xst > i3t, or cat = 0, 

x, . / u .  The origin for labeling is s, 

the terminal t.  If breakthrough results, 

add •.  Min(t. , x . — i . ) to trie flow In 

all forward arc;5 of the path from 3 to t, 

subtract c from the flow In all reverse 

arc: , and subtract e from x^f.  If nonbreak— 

through result::, add b  defined In (7;.?) to 

all u. for 1 in Z. 

(7n)  cst \ 0,  xst > ust.  Same as (a^) or (3?), 

except G - r;in(t , x_. -u^ ). 

The labeling process Is repeated for the arc at until 

either Jt ic In filter, or until a nonbreal'through occurs 
t 

for which the node ur-lce change ö - oo .  In the latter case, 

stop.  (There is no r'easlble circulation).  In the former 

case, locate another out-of—kilter arc and continue. 

4.  Termination and the monotone property.  Suppose that 

arc st is out of kilter, say in state a,. The origin for 

labeling Is t, the terminal s.  The arc st cannot be used to 

label s directly, since neither (?.ra) nor {},?u)   is applicable. 
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Con ..., qu .nt l y , if brea1 :: t.i~ ro !gh occurs , t he rc " ul ti nl7 pa '" h fro ra 

t t o s . together ·tith th arc s t, 1 a c cle . Then t he fl ow 

c hanges t ! a t ar ma e on a-r· ::.: or t ' li v c ole again ,rield a 

c irculat~o . .. . Iorcover, t h labe l i ng r-ule '< ha ve heen se lc c t ed 

j n s uch a ttli.ly tr a t l: 1 ter nu . oe r r. r or d.rc o t h i c yc le do 

not increa .:;e: · ( l O a t lea· ·t vne , nu.-nc l , fo~ arc :J t J · ec...-ease.J . 

Kilter nunber 3 . or a rc ~ no t in the cycle of c ours~ on't 

c 1ange . 

UC!l . If a tran i t on is 

0 or - r 

-<'_.-.c_= --~~ 1 O. ~~----'--- Q 
.l. 

0 0 (' - 0 j 0 ':"" _ ,. 

s;- ___ U-!::....;;~---~~ ~-J ~~--..::o:x .. -.-J,__ 3 t 
0 ') - <: 0 0 0 !' c 

-~ ~ c 7 ( ~ I 'Y .~----~-) 'Y..,(~__;____ _ (J 

D1acr3.rr· 



Verification o:- t he brea ·t hrough diagram is straightforward. 

For examr le , suppo se arc i j i s in s tate a 2 , with cij ) 0, 

x1 j ) jij' and kilter number c1 j (x1 j - .Cij) ) O. If iJ is not 

an arc of the cycle of flow changes , then 1j remains in state 

a 2 Nith zero change in kilter number. If the flow in arc ij 

has changed a s a result of the breakthrough, then either 1J ia 

the arc 3t or, by t he labeling rules (3.1), (3.2), lJ is a 

re er se arc or the path from origin to terminal. Specifically, 

1 \'las l abeled f rom j using (3.2a). In either case, xiJ de­

creases by the pos itive int eger ~ ~ xij - jij' the new state 

for i ,j i s a 2 or a, and hence the lcilter number tor 1J has 

decreased by ci j £ / o. The rest of the diagram may be 

veri f i ed s i milarly. 

The s tate trans itions and changes in kilter number that 

. a y occur following a nonbreakthrough with 6 < co are indicated 

in ~he followir.e diagr~,. (Again the subscripts lj are 

omitted .) 



0 or -6(x - •> 0 0 

~ ~ ~ 
2 al 

0 0 0 

x-u 
~ ")0 

l- X 
-C(x - /, 

f32 )o (31 ~0 
-C(x - u} 

~~ 
f-

0 0 

0 
0 

(Jr 
0 or 5(x - u) 

Nonhrea1<:through diagram 

Again we omit a detailed verification, but consider, for 

examole, an arc 1: in state ~l' so that c1 j ( 0, x13 ( uij' 

having kilter number cij(xij - uij) > 0 befotte the node price 

change is made. If both i and j are in Lor bot. in t, then 

c1 j remains t he s ame after the node prj ce chan~e , and conse­

quently 1., ... tays in state 'Yl wit .. no change in .<ilter number. 

~e cannot have 1 in L, j in~ (labeling rule (3.lb}), and hence 

t ne remaining possibility i a 1 in L, j in L. Then c1 j is 

increaned by 6 ) 0. Consequently the arc ij either remains in 

state '1' (if 6 <- e1j), goes into s tat.e f3 (if f5 =- c1J and 

x1 J L 11 j), into state f31 (if 6 = -c1 J and x1 j ( 11J)' or into 

state a 1 (if 5) -e1 j and x1 j ( l 1J), and the corresponding 
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changes in filter number are respectively ^(x. . — ^J^.) ^ 0* 

5(x1 , - uj ,) < 0, ^11 - x11 - 5(x1, - u.,) ^0, 

£..  -- x. 1 ~ C\ f(xj< •" ui J i 0-  (The remaining logical possibi- 

lity h /  -^ ^ x. , > i. , cannot occur, since if x. , • 1. ., then 

i,; ir. in 61- defined bv {5';0* and i^ence P (  -c. ..) 

It follows froiri the breakthrough and nonbreakthrough 

Jlatrrams that kilter numbers are monotone nonincreaslng 

throughout the comoutatlon.  Moreover, If breakthrough occurs, 

at least one arc kilter number decreases.  Thus to prove that 

the algorithm terminates, It cuff leer, to show that an Infinite 

sequence of successive nonbreakthroughs, each with 5 <( oo , is 

impossible.  To show this, let us suppose that a labeling 

resulting in nonbreakthrough with n ^ oo has occurred, and 

let L, Z  denote the labeled and unlabeled sets of nodes. After 

changing node prices, the new c" vector, which we denote by 

c , has components given in terms of the old by 

(4.1) 
_ i 

v - * 

[^i: 

for 1 In L, J In I 

6  ror 1 ?n L, :   in L 

otherwlae. 

If the arc st is still oui of .-liter, then the origin is the 

came for the next labeling, and it follows from (4.1) and the 

labeling rules that every node of L may again be labeled. 

7,hi'S If tne new labeling jgaln results in nonbreakthrough 
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with labeled set L , we have L c L . Let Cl,, U~  denote the 

new sets defined In terms of L , c  (and x) by {'jt.j),   (Vi.^), 

and suppose L = L .  Then, from (4.1) we have 61, «^cL, 

6(? c ü^,  and at least one of these Inclusions is proper L^ 

(3»3)* ()'6), (3»7)'  Hence the new labeling either assigns a 

label to at least one more node, or falling this, an are Is 

removed from one of the sets ^ or ^  It follows that, after 

finitely many nonbreaP-throughs with 6 <( oo , we either get the 

arc st in IciJter, obtain a breakthrough, or obtain a nonbreak— 

throurn with 5 = oo . 

If a nonbreakthrough with b      oo occurs, then there Is 

no feasible circulation.  For If 6 = OD , It follows from (?.j), 

(3.4) and the labeling rules {3'l),   (>•?) that x.. <_ u,i for 

i in L, J in I, and x,. ^ i* for 1 In L, J in T. Moreover, 

for the arc st, either t is in L, 3 in Z  with x . <! i,.^» or s la 

In L, t in L with x . "> u ^.  (This Is i.-nnedlate for cases st   s t 

a , ß , ö,^ 7,, of the algorithm, and follows from (3.5) and 

the assumption 5-00 for case Op, frorr. O.^) and the assumption 

f1 ^ 00 for case 7-i •)  Hence, summing the equations f^.l) over 

1 in L and noting cancellations, we obtain in all c^ses 

0 =   ?        (x  - x  ) >   T        (u  ' tn)' 
i In L  lj   '11   1 In L  1J   J1 

J in I j In I 

But this violates tne feasibility condition {2.k).    Thus 

6  00 implies there is no feasible circulation. 
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To sum up, the algorithm terminates after finitely many 

applications of the labeling procedure, either with all arcs 

in kilter (in which cace the feasible circulation is optimal), 

or with the conclusion that there Is no feasible circulation. 

Moreover, all arc kilter numbers are monotone nonlncreaslng 

throughout the computation. 

It is worthwhile to note the simplification that occurs 

if the method of the preceding section Is initiated with a 

feasible circulation. The states a., ß., ß2# y*  are then empty 

to begin with, and consequently remain empty throughout the 

computation. Hence at each nonbreakthrough (as well as each 

breakthrough), the kilter number for at least one arc, namely 

st, decreases by a positive Integer. In many minimal cost flow 

problems, a starting feasible circulation is readily at hand. 

For example, in the Hitchcock problem [l, 2, 3, 4] or the 

assignment problem [5» 6, 10], such is the case. 

5.  Comparison with other methods. The method of section 

3 is a generalization of the method of [9] for solving minimal 

cost flow problems, which in Itself generalizes the methods 

of [5, 6, 8, IO] for solving Hitchcock and assignment problems. 

In [?] the fundamental problem was that of finding a maximal 

feasible flow from source node 1 to sink node n that minimizes 

cost over all such flows.  (Also the lower bounds were assumed 

zero on all arcs. Thin is not really a restriction, since a 

change of variables will accomplish this, if desired.)  If we 

add to the network the special arc nl with i , = 0. u , = U. 
nl     nl   ' 
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c , = — C (U and C Icrge), and corclder feaclble clrculatlonr 

in the enlarged network, then the method of nectlon 3 la 

aoplicable to such problems.  Or If It IG desired to find an 

optimal flow from 1 to n of given value v = /(x, . — x.,) in 

the orlplncl network, we can add the arc nl with i , = u , =- v. nl   nl   ' 
cnl ~  0, in order t0 öact the problem In circulation form. 

The method of [9] begins with the zero flow frorr. nource 1 

to sink n (which satisfies the bounds on arc flows because 

lo». r bounds are zero), and nil  node prices zero.  It was also 

assumed that the given arc costs are nonnegative. Equivalently, 

If we take £ - = 0, u , = U, c , = — C and begin the algorithm m     m     ni 

of section 5 with the zero circulation and all node oricer 

zero, then the special arc nl is the only out-of—kilter arc 

(it Is In state y,), and hence it remains the only out—of-kilter 

arc throughout tbe computation.  Then the method of section ; 

reduces to that of [9]. 

It is also informative to note nome of the major contrasts 

between this method and the simple/ method |4j for solving such 

problems.  First of all, the simplex method would be done in 

two nhases, the first phase being a search for a feasible 

circulation, the second for an optimal circulation.  (Through- 

out both of these phases, the simplex method would work with 

basic solutions, a concept that plays no role in this method.) 

rere we have combined the two phases.  Ignoring this difference, 

however, and assuming that both methods start with a feasible 

circulation, the main contrast, apart from mechanics of operation. 
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appears to lie In the fact that, for the alnplex method, the 

kilter numbers are not nonotone.  For example, arcs that were 

In kilter at come stage of the simplex computation can go out 

of '-liter at later stages. 
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